Numpy中Meshgrid函数介绍及2种应用场景

阅读量:     Authors: Lemon NUMPY
Numpy Matplotlib

本文首发于我的微信公众号(ID:PyDataRoad)。

前言

近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法。

但总觉得印象不深刻,不是太了解meshgrid的应用场景。

所以,本文将进一步介绍Numpy中meshgrid的用法。

Meshgrid函数的基本用法

在Numpy的官方文章里,meshgrid函数的英文描述也显得文绉绉的,理解起来有些难度。

可以这么理解,meshgrid函数用两个坐标轴上的点在平面上画网格。

用法:

  [X,Y]=meshgrid(x,y)

  [X,Y]=meshgrid(x)与[X,Y]=meshgrid(x,x)是等同的

  [X,Y,Z]=meshgrid(x,y,z)生成三维数组,可用来计算三变量的函数和绘制三维立体图

这里,主要以[X,Y]=meshgrid(x,y)为例,来对该函数进行介绍。

[X,Y] = meshgrid(x,y) 将向量x和y定义的区域转换成矩阵X和Y,其中矩阵X的行向量是向量x的简单复制,而矩阵Y的列向量是向量y的简单复制(注:下面代码中X和Y均是数组,在文中统一称为矩阵了)。

假设x是长度为m的向量,y是长度为n的向量,则最终生成的矩阵X和Y的维度都是 nm (注意不是mn)。

文字描述可能不是太好理解,下面通过代码演示下:

加载数据

import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline

m, n = (5, 3)
x = np.linspace(0, 1, m)
y = np.linspace(0, 1, n)

X, Y = np.meshgrid(x,y)

查看向量x和向量y

x

out:
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ])

y

out:
array([ 0. ,  0.5,  1. ])

查看矩阵X和矩阵Y

X

out:
array([[ 0.  ,  0.25,  0.5 ,  0.75,  1.  ],
       [ 0.  ,  0.25,  0.5 ,  0.75,  1.  ],
       [ 0.  ,  0.25,  0.5 ,  0.75,  1.  ]])

Y

out:
array([[ 0. ,  0. ,  0. ,  0. ,  0. ],
       [ 0.5,  0.5,  0.5,  0.5,  0.5],
       [ 1. ,  1. ,  1. ,  1. ,  1. ]])

查看矩阵对应的维度

X.shape

out:
(3, 5)

Y.shape

out:
(3, 5)

meshgrid函数的运行过程,可以通过下面的示意图来加深理解:

meshgrid.jpg

再者,也可以通过在matplotlib中进行可视化,来查看函数运行后得到的网格化数据的结果

plt.plot(X, Y, marker='.', color='blue', linestyle='none')
plt.show()

result.png

当然,我们也可以获得网格平面上坐标点的数据,如下:

z = [i for i in zip(X.flat,Y.flat)]
z

out:
[(0.0, 0.0),
 (0.25, 0.0),
 (0.5, 0.0),
 (0.75, 0.0),
 (1.0, 0.0),
 (0.0, 0.5),
 (0.25, 0.5),
 (0.5, 0.5),
 (0.75, 0.5),
 (1.0, 0.5),
 (0.0, 1.0),
 (0.25, 1.0),
 (0.5, 1.0),
 (0.75, 1.0),
 (1.0, 1.0)]

Meshgrid函数的一些应用场景

Meshgrid函数常用的场景有等高线绘制及机器学习中SVC超平面的绘制(二维场景下)。

分别图示如下:

(1)等高线

contour.png

(2)SVC中超平面的绘制:

svc.png

关于场景(1)和场景(2),将在后续的文章里做进一步描述。

当然,可能还有些其他场景,这里就不做进一步介绍了。


对我的文章感兴趣的朋友,可以关注我的微信公众号(ID:PyDataRoad),接收我的更新通知。

« Previous Next »