2018世界杯:用Python分析热门夺冠球队-附源代码
阅读量:次 Authors: Lemonbit PROJECTS
projects-world-cup Pandas recommend
阅读量:次 Authors: Lemonbit PROJECTS
projects-world-cup Pandas recommend
Table of Contents
2018年,火热的世界杯即将拉开序幕。在比赛开始之前,我们不妨用 Python 来对参赛队伍的实力情况进行分析,并大胆的预测下本届世界杯的夺冠热门球队。
通过数据分析,可以发现很多有趣的结果,比如:
当然,我们本次的主要任务是要通过数据分析来预测2018年世界杯的夺冠热门队伍。
本次分析的数据来源于 Kaggle, 包含从 1872 年到今年的数据,包括世界杯比赛、世界杯预选赛、亚洲杯、欧洲杯、国家之间的友谊赛等比赛,一共大约 40000 场比赛的情况。
本次的环境为
先来看看数据的情况:
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('ggplot')
df = pd.read_csv('results.csv')
df.head()
该数据集包含的数据列的信息如下:
结果如下:
df_FIFA_all = df[df['tournament'].str.contains('FIFA', regex=True)]
df_FIFA = df_FIFA_all[df_FIFA_all['tournament']=='FIFA World Cup']
df_FIFA.head()
结果如下:
数据做一个初步整理
df_FIFA.loc[:,'date'] = pd.to_datetime(df_FIFA.loc[:,'date'])
df_FIFA['year'] = df_FIFA['date'].dt.year
df_FIFA['diff_score'] = df_FIFA['home_score']-df_FIFA['away_score']
df_FIFA['win_team'] = ''
df_FIFA['diff_score'] = pd.to_numeric(df_FIFA['diff_score'])
创建一个新的列数据,包含获胜队伍的信息
# The first method to get the winners
df_FIFA.loc[df_FIFA['diff_score']> 0, 'win_team'] = df_FIFA.loc[df_FIFA['diff_score']> 0, 'home_team']
df_FIFA.loc[df_FIFA['diff_score']< 0, 'win_team'] = df_FIFA.loc[df_FIFA['diff_score']< 0, 'away_team']
df_FIFA.loc[df_FIFA['diff_score']== 0, 'win_team'] = 'Draw'
df_FIFA.head()
# The second method to get the winners
def find_win_team(df):
winners = []
for i, row in df.iterrows():
if row['home_score'] > row['away_score']:
winners.append(row['home_team'])
elif row['home_score'] < row['away_score']:
winners.append(row['away_team'])
else:
winners.append('Draw')
return winners
df_FIFA['winner'] = find_win_team(df_FIFA)
df_FIFA.head()
结果如下:
s = df_FIFA.groupby('win_team')['win_team'].count()
s.sort_values(ascending=False, inplace=True)
s.drop(labels=['Draw'], inplace=True)
用pandas可视化如下:
柱状图
s.head(20).plot(kind='bar', figsize=(10,6), title='Top 20 Winners of World Cup')
水平柱状图
s.sort_values(ascending=True,inplace=True)
s.tail(20).plot(kind='barh', figsize=(10,6), title='Top 20 Winners of World Cup')
饼图
s_percentage = s/s.sum()
s_percentage
s_percentage.tail(20).plot(kind='pie', figsize=(10,10), autopct='%.1f%%',
startangle=173, title='Top 20 Winners of World Cup', label='')
分析结论1: 从赢球场数来看,巴西、德国、意大利、阿根廷四支球队实力最强。
通过上面的分析,我们还可以来查看部分国家的获胜情况
s.get('China', default = 'NA')
s.get('Japan', default = 'NA')
s.get('Korea DPR', default = 'NA')
s.get('Korea Republic', default = 'NA')
s.get('Egypt', default = 'NA')
运行结果分别是 ‘NA’,4,1,5,‘NA’。
从结果来看,中国队,在世界杯比赛上(不含预选赛)还没有赢过。当然,本次世界杯的黑马-埃及队,之前两度进入世界杯上,但也没有赢过~~
上面分析的是赢球场数的情况,下面我们来看下进球总数情况。
df_score_home = df_FIFA[['home_team', 'home_score']]
column_update = ['team', 'score']
df_score_home.columns = column_update
df_score_away = df_FIFA[['away_team', 'away_score']]
df_score_away.columns = column_update
df_score = pd.concat([df_score_home,df_score_away], ignore_index=True)
s_score = df_score.groupby('team')['score'].sum()
s_score.sort_values(ascending=False, inplace=True)
s_score.sort_values(ascending=True, inplace=True)
s_score.tail(20).plot(kind='barh', figsize=(10,6), title='Top 20 in Total Scores of World Cup')
分析结论2: 从进球总数量来看,德国、巴西、阿根廷、意大利四支球实力最强。
上面分析的是自1872年以来的所有球队的数据情况,下面,我们重点来分析下2018年世界杯32强的数据情况。
2018年世界杯的分组情况如下:
第一组:俄罗斯、德国、巴西、葡萄牙、阿根廷、比利时、波兰、法国
第二组:西班牙、秘鲁、瑞士、英格兰、哥伦比亚、墨西哥、乌拉圭、克罗地亚
第三组:丹麦、冰岛、哥斯达黎加、瑞典、突尼斯、埃及、塞内加尔、伊朗
第四组:塞尔维亚、尼日利亚、澳大利亚、日本、摩洛哥、巴拿马、韩国、沙特阿拉伯
获取32强的所有数据
首先,判断是否有队伍首次打入世界杯。
team_list = ['Russia', 'Germany', 'Brazil', 'Portugal', 'Argentina', 'Belgium', 'Poland', 'France',
'Spain', 'Peru', 'Switzerland', 'England', 'Colombia', 'Mexico', 'Uruguay', 'Croatia',
'Denmark', 'Iceland', 'Costa Rica', 'Sweden', 'Tunisia', 'Egypt', 'Senegal', 'Iran',
'Serbia', 'Nigeria', 'Australia', 'Japan', 'Morocco', 'Panama', 'Korea Republic', 'Saudi Arabia']
for item in team_list:
if item not in s_score.index:
print(item)
out:
Iceland
Panama
通过上述分析可知,冰岛队和巴拿马队是首次打入世界杯的。
由于冰岛队和巴拿马队是首次进入世界杯,所以这里的32强数据,事实上是没有这两支队伍的历史数据的。
df_top32 = df_FIFA[(df_FIFA['home_team'].isin(team_list))&(df_FIFA['away_team'].isin(team_list))]
赢球场数情况
s_32 = df_top32.groupby('win_team')['win_team'].count()
s_32.sort_values(ascending=False, inplace=True)
s_32.drop(labels=['Draw'], inplace=True)
s_32.sort_values(ascending=True,inplace=True)
s_32.plot(kind='barh', figsize=(8,12), title='Top 32 of World Cup since year 1872')
进球数据情况
df_score_home_32 = df_top32[['home_team', 'home_score']]
column_update = ['team', 'score']
df_score_home_32.columns = column_update
df_score_away_32 = df_top32[['away_team', 'away_score']]
df_score_away_32.columns = column_update
df_score_32 = pd.concat([df_score_home_32,df_score_away_32], ignore_index=True)
s_score_32 = df_score_32.groupby('team')['score'].sum()
s_score_32.sort_values(ascending=False, inplace=True)
s_score_32.sort_values(ascending=True, inplace=True)
s_score_32.plot(kind='barh', figsize=(8,12), title='Top 32 in Total Scores of World Cup since year 1872')
分析结论3: 自1872年以来,32强之间的世界杯比赛,从赢球场数和进球数量来看,德国、巴西、阿根廷三支球队实力最强。
自1872年到现在,已经有100多年,时间跨度较大,有些国家已发生重大变化,后续分别分析自1978年(近10届)以及2002年(近4届)以来的比赛情况。
程序代码是类似的,这里只显示可视化的结果。
赢球场数情况
进球数据情况
分析结论4: 自1978年以来,32强之间的世界杯比赛,从赢球场数来看,阿根廷、德国、巴西三支球队实力最强。从进球数量来看,前3强也是这三支球队,但德国队的数据优势更明显。
赢球场数情况
进球数据情况
分析结论5: 自2002年以来,32强之间的世界杯比赛,从赢球场数和进球数量来看,德国、阿根廷、巴西三支球队实力最强。其中,德国队的数据优势更明显。
2018年世界杯的32支队伍,根据以往的世界杯比赛数据来看,预测前三强为 德国、阿根廷和巴西,其中德国队应该是夺冠的最大热门。
特别说明: 以上数据分析,纯属个人学习用,预测结果与实际情况可能偏差很大,不能用于其他用途。
本文是一次比较综合的项目实战,希望可以给大家带来一些启发。
« Previous Next »赞赏、点赞、转发、点点微信文章广告支持是一种认可,如需获取本文源代码,请在公众号后台回复 “PyDataRoad” ,谢谢大家支持。